
Streamed or Detached Triple Integrity for a Time Stamped
Secure Storage System

Axelle Apvrille
�

James Hughes
�

Vincent Girier
�

�
Storage Technology European Operations

�
Storage Technology Corp.

Toulouse Research & Development Center
1 Rd Point Général Eisenhower 7600 Boone Avenue North

31106 Toulouse, France Minneapolis, MN 55428, USA�
Axelle Apvrille, Vincent Girier � @storagetek.com jim@network.com

Abstract

Organizations and companies with integrity concerns for
their archivals are currently left with very few and un-
convenient solutions. To cope with those needs, a Time
Stamped Virtual WORM system has been proposed previ-
ously, but only its concepts and theory have been exam-
ined yet.

Hence, this paper focuses on defining practical block
formats to help implement this system in reality. But there
are several pitfalls on the path of implementation, and this
paper has to be extremely cautious not to introduce any
limit - or security flaw - into virtual WORMs. With such
requirements, two different block formats are successfully
defined: a streamed format where security data is inserted
within user’s documents, and a detached format where se-
curity information is written in a different location.

Finally, the detached format is studied in the sample
case of a tamper-evident FTP server.

Keywords

INTEGRITY, TIME STAMP, STORAGE, DIGITAL SIGNA-
TURE, WORM, XML.

1 Introduction
�

HE burst in data volumes has led to a growing con-
cern for security of archives. Storing data is already

an interesting feature, but providing triple integrity guar-
antees (data, time and copy integrity) is even better.

No on-the-shelf solution being available, we have pre-
viously proposed in [AH02] a Time Stamped Virtual
WORM (Write Once Read Many) system. Using crypto-
graphic hash functions and digitally signed time stamps,
it defines security information to secure user data. This
system is media-independent and it meets triple integrity
requirements. However, only a theoretical study has been
done previously, though there is a strong need for a real
implementation which (1) does not introduce any security
flaw, (2) is adaptable to any kind of media and (3) may
evolve easily throughout years.

To do so, this paper proposes two generic block for-
mats: a streamed format where security is written within
the user data stream, and a detached format where secu-
rity data is kept apart from user’s data. XML Schemas for
this format are proposed, and help define extensible, easy
to adapt solutions.

The paper is organized as follows. Section 2 introduces
previous work concerning secure virtual WORM storage,
and explains how this system achieves “Triple Integrity”.
Section 3 explains the need for a data format and proposes
a streamed data format for the system. This solution is

1

improved in section 4 where security data does not need
any longer to be inserted in data to secure. Finally, section
5 discusses about a sample application of our proposition,
over a secure tamper-evident FTP server.

2 Previous work on tamper-evident
storage systems

2.1 Using WORM systems for security

Multiple studies have already focused on secure storage.
Globally, all of them have settled down for WORM sys-
tems using media where one can only write once but pos-
sibly read multiple times. For instance, [Kah00] has stud-
ied use of WORM optical disks for archival of legal evi-
dence documents.

Unfortunately, “physical” WORMs have shown their
limits in [ASD99], because whatever technology is used,
a skilled user - with appropriate equipment - can always
manage to alter documents. Moreover, we have stated in
[AH02] that secure time stamps were not taken into ac-
count in such systems, even though date could be an im-
portant information for most legally archived documents.

So, different sorts of WORM technologies have arisen
and are classified in [Wil97]. On one side, E-WORMs em-
bed protection code, but they have not been very success-
ful because they do not significantly improve data secu-
rity compared to physical WORM supports (see [AH02]).
On the other side, S-WORMs offer software protection
for data, but they have initially been abandonned because
it seemed too easy to by-pass software protection (see
[Wil97]).

The use of cryptography has given back interest in S-
WORMs, and it has led us to propose in [AH02] a new
kind of WORM technology: virtual WORMs. Behaving
like physical WORM supports, they focus on securing
data itself, independently of hardware support: data can
be secured on a support which does not provide physical
security, like for example a magnetic tape, or a hard disk.
Furthermore, secure time stamping functionalities are of-
fered. This system has consequently been named Time
Stamped Virtual WORM.

On a legal point of view, such systems are accept-
able as (1) several countries have agreed on the suitabil-
ity of electronic records in court trials (for instance see

[ESI00, LAW01]), and (2) media or technology to be
used for storing important documents are very rarely men-
tioned, leaving laws open to any possible evolution. Till
1997, a rare exception to this was the Securities and Ex-
change Commission (SEC) in the U.S., but finally, they
amended their rule in [SECS97] to expand electronic stor-
age solutions for brokers and dealers. Similar work is also
currently under progress in AFNOR and ISO recommen-
dations such as [AFN01].

So, technically, Time Stamped Virtual WORM systems
offer a real secure storage alternative to traditional optical
disks, and legally, they are accepted by most regulations.

2.2 Basics of Time Stamped Virtual
WORM systems

The general concept of Time Stamped Virtual WORM sys-
tems has been proposed in [AH02]. Basically, data is se-
cured during a “WORMing” process at figure 1.

Figure 1: Description of Time stamped virtual WORM
mechanism. Both one-way hash functions and digital sig-
natures are used to secure documents.

2

User data is first split into blocks. Then, blocks are
chain hashed [AH02, � 3.1]: this consists in hashing each
block with the previous block hash. Finally, the last mem-
orized block hash is time stamped and digitally signed us-
ing for instance [ACPZ01]. Naturally, the “WORMing”
process is reversible: documents may be “UnWORMed”
by simply taking off all block hashes and time stamps.

Document’s validity may be checked upon request
from a validator, at any time after it has been secured.
Depending on situations, the validator may be the user, or
a trusted third party. A good way to do that, for instance,
is to develop an Open Source validation program, so that
anybody can check the sources and improve them. As the
validation program is not owned by any specific party, it
can be more easily trusted not to be corrupt.

2.3 Triple Integrity for Time Stamped Vir-
tual WORMs

In this paper, triple integrity makes reference to the com-
bination of data integrity, time integrity and copy in-
tegrity. Time Stamped Virtual WORM systems have been
designed to meet those requirements:

� data integrity requirements are met by both block
hashes and the time stamp’s digital signature. Tech-
nically speaking, the block hashes are not strictly
necessary for data integrity, but (1) they make it pos-
sible to time stamp less frequently (hence improv-
ing performances) and (2) in simple cases, they help
spot accidental write failures. Security details may
be found in [AH02, � 3.2, � 4.1].

� time integrity is taken into account by digitally
signed time stamps. In [AH02, � 3.3], we have stated
those time stamps are impossible to forge provided
the Time Stamp Authority (TSA) is trusted. Vari-
ous methods have been proposed to loosen this trust
[HS91, BdM91, BHS93]. On our side, we have sug-
gested use of a dedicated physically secure hardware
card meeting FIPS 140-2 [NIS01] level 3 or 4 re-
quirements.

� copy integrity is the ability to prove a copy is strictly
identical to the original, and is meant to prevent peo-
ple from making fake copies of documents. Basi-
cally, Time Stamped Virtual WORMs require bit-to-

bit checking of less than 0.01% of user data. Details
of copy integrity’s importance, and how it is solved
may be found in [AH02, � 2.2, � 4.2].

2.4 Limits to Time Stamped Virtual
WORMs

Time Stamped Virtual WORM systems are an interesting
alternative to physical WORMs because they are media
independent and because they offer strong cryptographic
level security such as triple integrity.

Yet, previous work has only presented the theoretical
concepts of such systems, and direct implementation of
this work is impossible. If we merely write a first block
hash �	� , then user data
�� etc till �� ,
�� and the fi-
nal time stamp, there is absolutely no way to know where
user data blocks start and end, when we’re dealing with
a time stamp or a block hash. This leads us to defining
block formats for Time Stamped Virtual WORMs. In sec-
tion 3, we’ll propose a block where security information
is written within the stream of user data, and in section
4, a block format which separates security data from user
flow.

3 Streamed data format

Defining a data format is a step towards implementation
of Time Stamped Virtual WORM. However, there are sev-
eral pitfalls our data format should be extremely cautious
about:

1. it should not introduce any security flaw. If triple
integrity is no longer met when the data format is
used, something is definitely wrong.

2. it should be extensible. Time Stamped Vir-
tual WORMs were intended for long-term storage.
There’s a very high probability new needs, new tech-
nologies will arise in a ten-year’s time, so data for-
mat should be ready to evolve.

3. it should introduce as few limits as possible to the
theoretical model. For instance, the storage sys-
tem is media-independent, this feature should not be
jeopardized by the data format.

3

3.1 Block description

� 2.4 has shown that data format’s main goal was (1) to
set boundaries between user and security data and (2) to
say whether security data contains a block hash or a time
stamp. As this information is not included in user or se-
curity data, it should be added somewhere and should be
easily accessible on any media. File systems offer random
access, but tapes are more limited with only sequential ac-
cess. Consequently, we chose to add all missing informa-
tion in a WORM header, and not a footer. Then, we chose
to append a security data block, and a user data block: this
forms a WORM unit (see figure 2). Actually, the order be-
tween security and user data is not important, but a choice
had to be made.

Figure 2: Components of a WORM unit: header, security
data and user data.

Placing a header at the beginning of each WORM unit
is not enough to make it easy to read on any media. As
a matter of fact, tapes can only read a record if provided
buffer is big enough to contain the whole record (impossi-
ble to split a record). Unfortunately, no operation is able
to return the size of a next record. So, if header’s size
is not fixed, one should always allocate a large enough
buffer to be sure to read it: this is not a good option,
because this maximum buffer size depends on the tape
drive. As this did not introduce any prejudice to other
supports, we chose to define the WORM header as a fixed
size block. A block layout example of a WORMed tape is
given at figure 3.

On tapes, each file is represented by multiple records,
and ended by a tape mark. For a WORMed tape, each file
is a sequence of WORM units - with the last unit contain-
ing a time stamp.

This solution uses one WORM header for every se-

Figure 3: Block layout overview of a WORMed tape.

curity / user data couple. Instead, a single global
WORM header could have been written for all blocks
���� ���
���� ������� ���� ���
���� � till time stamp ��� . This reduces
the number of WORM headers from ��� � to 1 (on
tapes, this is interesting because writing a new record is
time consuming). The header should have memorized the
number of security blocks (���!�), and the number of user
data blocks (n). Nonetheless, this solution has not been
chosen because:

� it implies the fact that the number of security and
user blocks is known at the beginning of the WORM-
ing process. This is not true. Virtual WORMs are
meant to operate on input streams, so they might not
have the knowledge of when a document might end.

� it implies the fact that all user blocks have the same
size and all security blocks too (or the header should
contain a map of all blocks, with their respective
size, but this is quite complicated). Although user
blocks may be of fixed size, virtual WORMs have
actually never required this, so we do not wish to
introduce an additional constraint. As for security
blocks, their size cannot be fixed because for in-
stance, if Time Stamp Authority’s keys are changed,
a new public key certificate (with possibly a different
size) needs to be inserted into the time stamp.

4

3.1.1 WORM headers

� 3.1 has explained the use of one fixed size WORM
header in every WORM unit, and that it should be able
to set boundaries between user and security data (possi-
bly of variable size) and indicate the content of security
data.

As elements’ order in a WORM unit is fixed (security
and then user data), header just needs to memorize sizes.
Security data size and user data size have been allocated 4
bytes each (see figure 4). This limits their size to 4GB, but

Maj Min Type Reserved
1 20 3

4 − 7
SecDataSize

8 − 11
UserDataSize

Figure 4: WORM header format. The upper line indicates
the number of bytes allocated for each field.

this seemed reasonable to us. A type indicator is also in-
cluded in the header (Type), offering 256 possible types.
Only 2 of them are used at the moment: block hash and
time stamp.

Finally, to keep this format extensible, a version num-
ber has been included, represented by a major (Maj) and
a minor (Min) number.

3.1.2 Security data

Both types of security data (block hash or time stamp)
are built upon the same model: first, an identifier on 2
bytes and then, context dependent information. Total size
is indicated in the SecDataSize field of the header.

For block hashes, the identifier represents the mecha-
nism which has been used to obtain the block hash, and
it is simply followed by the hash data (ex: SHA-1 out-
put a 20-byte digest): refer to table 1. The identifier is
different from a hash algorithm identifier, because, for in-
stance, it may represent chain hashing with SHA-1 hash

functions. At times where ASN.1 [ITU97a] is being chal-
lenged by XML, we haven’t thought it wise to use ASN.1
object identifiers to represent the block hash mechanism,
as this would have meant depending from that standard.

Table 1: Block hash format.

MechID DigestValue

For time stamps, the identifier represents the format of
the time stamp (see table 2). As a matter of fact, there are
multiple ways of representing time stamps: DER encoded
[ITU97b] time stamp response from [ACPZ01], an XML
time stamp (see [AG02]), a proprietary format etc. The
identifier is followed by the time stamp itself. Its size
may vary but it can be deduced from the WORM header’s
SecDataSize field.

Table 2: Time stamp format.

TimeStampType TimeStampValue

3.1.3 User data block

Finally, the user data part is the simplest: it is just plain,
raw, user data. User data should not be modified. For
instance, if user data ends by a few trailing zeros, those
zeros should not be truncated or this will be considered as
data tampering.

One should also note that user data might be empty.
For example, the last information which is written about
a WORMed document is its time stamp. This consists in
a WORM header, and security data being the time stamp,
but there is no user data. The header should mention this
by setting its UserDataSize field to 0.

3.2 Triple Integrity with streamed data for-
mat

This data format does not impact the content of security
data. So, security data still secures user data regarding

5

data, time and copy integrity: the triple integrity features
of Time Stamped Virtual WORMs is preserved.

The only possible attack one may attempt is to modify
the WORM block format itself: a WORM header, or the
mechanism and time stamp identifiers. For instance, an at-
tacker can corrupt sizes of security or user data. As header
is not sealed, this modification is not detected. However,
it is important to note that:

1. the attacker cannot modify user data undetectably.
At most, he can merely ruin the system. Unfortu-
nately, this has always been true as Virtual WORMs
are not tamper resistant.

2. an analysis program reading carefully data flow
might reveal simple attacks, and even be able to re-
cover original data. For instance, if a WORMed doc-
ument references use of chained hashes with SHA-1
for all blocks except block
#"%$, an analysis program
could send an alarm and try to recover the document
by setting back the block hash mechanism identifier
to “chained hashing with SHA-1”.

To conclude, section 3 has proposed a data format to
help implement Time Stamped Virtual WORM systems.
This data format meets defined criterias as triple integrity
is still achieved, only few minor limits are introduced
(blocks cannot exceed 4 GB), and evolution is possible
(version number is included, and fields are allocated more
bytes than necessary).

This data format is said to be streamed as security data
is written in the flow of user data. As this is not convenient
in all situations, in next section, we’ll try to improve this
format by detaching security data.

4 Making a detached triple integrity
certificate

4.1 The need for detached security data

Block format defined in section 3 is efficient for process-
ing input streams of sequential data. However, with such
a format, secured document now contains additional in-
formation: headers and security data blocks have been in-
serted.

This might not be very convenient for two reasons.
First, extremely secure environments might require user
document is left strictly unmodified: nothing should be
inserted in it (and, actually, it is quite paradoxal that work-
ing on document integrity and non-modification, the stor-
age system is in reality allowed to modify them). Second,
with such a block format, user’s and validator’s needs are
incompatible: user cannot work with a secured document
because headers and security blocks pollute it, and valida-
tor cannot validate anything without security information.
Consequently, they cannot communicate easily with each
other because they do not need the same information.

So, actually, there is a need for a format where secur-
ing a document does not “corrupt” it, and where user and
validator both get the information they need, but no more.

4.2 The detached block format

To solve this problem, this paper proposes to store sepa-
rately headers and security data blocks from user blocks.
Hence, user data remains strictly unmodified, and it is
easy to send only user data to user, and everything (head-
ers, security and user blocks) to the validator.

An example of detached block format is represented at
figure 5. Tape 1 only contains user data, whereas tape 2
contains detached security data. Tapes may be stored in
separate locations.

Figure 5: Example of detached block format on tapes.

The sequence of headers and security data blocks actu-
ally are a sequence of special WORM units: their head-

6

ers mention user data, but those blocks are never present.
This is not possible in the streamed data format, so we
need to indicate this is a detached mode. For instance, we
suggest to add a detachedMode flag in the Reserved
area of the WORM header (see figure 4 in � 3.1.1).

So, a document now undergoes the following process:

� at storage time, the document goes through the
WORMing process. Output dispatches user data in
a given location and, at some other place, WORM
headers and security data.

� at retrieval time, there is no processing to be done:
the system can just send user data blocks as is.

� at validation time, the validator requests WORM
headers and security data from the storage system.
Then, he retrieves the unsecured document to be val-
idated. Note the user can send him the document:
it is now easy for them to communicate. Finally,
he checks document’s authenticity: he’s got all el-
ements to complete his task.

There is also a concern about size of information sent to
the validator. If a 1 GByte file is WORMed, the validator
surely won’t be willing to receive an additional 1GB of se-
curity information ! Fortunately, size of WORM headers
and security data is very small compared to user data: for
a 1 GB file, under reasonable conditions, table 3 evaluates
security information to only roughly 140 KBytes.

Table 3: Approximate size of a WORM certificate for a
1GB file, using 4096 x 256KB blocks, chained SHA-1
hashing, and 2048 bit RSA signatures.

&('()+*-,
(12 bytes header

+ 22 bytes) security data
+ 12 bytes header
+ 2048 bytes estimation of time

stamp’s size
+ 256 bytes time stamp’s sig-

nature. 140 KBytes

4.3 From detached block format to de-
tached WORM certificates

When stored, WORM headers and security data are just
plain binary information. We’d like to improve this and
offer to the validator a better suited representation of
the information he needs. Similarly to digital signatures
where validators check certificates, this led us to the idea
of building a WORM certificate.

A WORM certificate is merely the representation of
WORM headers and security data (also called “pre-
certificate” information). Multiple representations exist,
so WORM certificates may be represented with different
ways. For instance, figure 6 has represented two possible
WORM certificates of the same “pre-certificate” informa-
tion: a PEM-like WORM certificate, and an XML-like
WORM certificate.

Figure 6: Converting pre-certificate information into a
WORM certificate.

4.4 Example of detached WORM certificate
representation using XML

A WORM certificate needs to be easy to process for the
validator, extensible, and if possible customizable and hu-
man readable. XML meets all those criterias as multi-
ple XML parser tools exist and help process XML doc-
uments, XML has been designed to be extensible (its
name is eXtensible Markup Language), and finally its

7

<element name="WormCertificate" type="worm:WormCertificateType"> *1*
<complexType name="worm:WormCertificateType"> *1*

<sequence> *1*
<element name="SecData" type="worm:SecDataType" *1*
maxOccurs="unbounded"/> *1*

</sequence>
</complexType>

</element>
<complexType name="worm:SecDataType"> *2*

<choice> *2*
<element name="HashData" type="worm:HashDataType" /> *2*
<element name="TimeStampData" type="worm:TimeStampDataType" /> *2*

</choice> *2*
</complexType>
<complexType name="worm:HashDataType">

<sequence>
<element name="MechanismIdentifier" type="anyURI" /> *3*
<element name="HashValue" type="ds:DigestValueType" /> *4*

</sequence>
</complexType>
<complexType name="worm:TimeStampDataType" >

<sequence>
<element name="TimeStampIdentifier" type="anyURI" /> *3*
<element name="TimeStampValue" type="tsp:TimeStampRespType" /> *4*

</sequence>
</complexType>

Figure 7: XML Schema for a WORM certificate.

layout may be customized by using XML stylesheets.
Consequently, using an XML representation of detached
WORM certificate seemed quite adequate.

In this example, our representation of WORM cer-
tificates uses XML time stamps [AG02, � 4.2] (the tsp
namespace), and XML Signatures [ERS02] (the ds
namespace). Used namespaces are listed at figure 8.

<schema xmlns="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://ourWormNameSpace"
xmlns:tsp="http://www.isse.org/papers/2002

/ApvrilleGirier"
xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
xmlns:worm="http://ourWormNameSpace’’

elementFormDefault="qualified" />

Figure 8: Definition of XML namespaces used for an XML
representation of WORM certificates.

Then, we use XML Schema [W3C01] to define the con-
tent of an XML WORM certificate. Part 1 of figure 7
defines the certificate as a sequence of headers and secu-
rity data couples. Part 2 states that security data is actu-
ally a choice between either a block hash or a time stamp.

In *3* we can notice that block hashing mechanisms and
time stamp identifiers are represented as URIs - which is
common in XML. Finally, in *4*, we rely on the defini-
tion of digest values in [ERS02] (DigestValueType)
and time stamp responses (TimeStampRespType) in
[AG02].

4.5 Triple Integrity for the detached block
format

With the detached mode, security data is the same, it is
only stored in a separate location from user data. Con-
sequently, using the detached mode does not change any-
thing to security guarantees offered by Time Stamped Vir-
tual WORM systems (refer to � 3.2).

One would have maybe expected detached WORM cer-
tificates to be globally signed. However, this is unneces-
sary because there is already a signature: the signature of
time stamps. Block hashes being chained, time stamp’s
signature secures all previous blocks. Adding a global
signature will not improve integrity guarantees regarding
user’s data, it will merely prove the WORM block format
itself has not been corrupted. Thus, we have not thought

8

an additional signature useful enough.

5 Building a tamper-evident FTP
server

In this section, we propose to develop a sample appli-
cation to WORM block formats: a tamper-evident file
server.

5.1 Primary goals of a tamper-evident FTP
server

A user has the following needs: he wants an easy way
to archive multiple documents, and additionally (1) he re-
quires his data cannot be tampered with undetectably, and
(2) he wants to know for sure when he stored his docu-
ment (so that, for instance, he can compare different ver-
sions). In a word, he needs a tamper-evident file server
with secure time stamping capabilities.

As FTP [PR85] is a very famous protocol dedicated
to file transfers, with multiple implementations on any
platform (even standard browsers understand FTP), it has
been selected for transferring user documents. For secu-
rity guarantees, as user needs fit in triple integrity, a Time
Stamped Virtual WORM service could handle them. So,
basically, we need an FTP server to address transparently
a Time Stamped Virtual WORM service. The resulting
application - a WORM FTP server - should handle three
different situations (refer to figure 9):

1. when user puts a file on the server, it is transferred
via FTP, and then automatically secured by the Time
Stamped Virtual WORM service,

2. user should be able to retrieve his file from the server.
His file should be unmodified,

3. validator should be able to check integrity of a re-
trieved file.

5.2 Designing a WORM FTP Server with
detached WORM certificates

When a user retrieves his file, he expects to receive his
file and only his file. Headers and security data should be

? Check security

File Transfer

Service

Tamper−evident FTP server

Time stamped

Virtual WORM
service

1

3

2

Archive and save the file

Retrieve the file

User

Figure 9: Use cases for a WORM FTP server.

omitted. On the other hand, when the validator wishes to
check a file, he needs all information. This is a typical
scenario for using the detached format (section 4).

So, we propose that when a user puts a file on the
server, it is transferred via FTP, and then automatically
secured, in a detached mode, by the Time Stamped Vir-
tual WORM service (see figure 9). As detached mode
is used, retrieval is very simple: when a user gets a file
from the server, it can be sent over without any previous
transformation. Note that in this case, the time-stamping
authority is supposed to be part of the FTP server. Other
schemes could be designed with the FTP server sending
requests for time-stamps to an external authority.

For validation, there are two eligible solutions. First,
the validator could be asked to send a status command
to the server. WORM headers and security data blocks
for a given file would then be converted into a detached
WORM certificate and sent over to the validator. This
solution is quite neat, but some FTP clients cannot easily
send status commands. For instance, with a browser, you
can merely authentify yourself and retrieve files.

Consequently, a second solution has arisen: when a
file is put on the server, it is automatically processed in
detached mode, so we could simply write this detached
pre-certificate information as a file on the server (for in-
stance, we could append a .SEC extension to its name).
To retrieve a WORM certificate, the validator would then
merely need to request the appropriate .SEC file. The
server would receive the request, and transform the pre-
certificate information into a WORM certificate and send
it back to the validator. This solution is not perfect, be-
cause it duplicates the number of files on the FTP server,

9

however it offers an easy solution to retrieve validation
data. Finally, this is the solution we have selected.

5.3 Implementing a WORM FTP Server

More precisely, if no status command is to be used, the
STOR and RETR FTP commands should be modified (see
figure 10).

Store file + detached pre−certificate info.
or ERROR

1. Retrieve user file and send it
2. Make a detached WORM certificate,
 send it
or ERROR

STOR

WORM FTP Server

RETR

Figure 10: Overview of FTP server commands to modify
for use with a Time Stamped Virtual WORM service.

The STOR command is used, with a pathname argu-
ment, to store a file on an FTP server. It accepts trans-
ferred data on a data connection. If the given pathname
does not refer to any existing file yet, then transfer the
file, and then WORM it. Two output files should be cre-
ated: the user file unmodified, and a pre-certificate file
with a .SEC extension appended to its name. If the file
already exists, it should be WORMed again, and both re-
sulting files should be overwritten with new information.
If for some reason the WORMing process fails, the com-
mand should fail with a permanent negative completion
reply error (see [PR85, � 4.2]).

The RETR command is used, with a pathname argu-
ment, to retrieve a file stored on the FTP server. On the
server, the file’s content should remain unaffected. If the
pathname refers to a pre-certificate file, the file should first
be converted into a WORM certificate - using a given rep-
resentation, for instance XML (see � 4.4) - and then sent
back over a data connection. If the pathname refers to
user file, then the file can simply be sent back without any
processing. If the file does not exist, or the conversion to
a WORM certificate fails, the command should fail with
an appropriate error.

5.4 Possible threats to the FTP WORM
server

Let’s look back at our FTP WORM server. If an attacker
has access to the server, he cannot successfully modify a
file undetectably: the pre-certificate information is there
for detection of tampering. If he modifies pre-certificate
information, then the information does not match the file
any longer. If he modifies both, the time-stamp in the
pre-certificate information will not fit. The WORM layer
guarantees triple integrity for files stored on the server.

If the attacker hacks communications between the
server and the client, then he can possibly modify the file
to be stored on the server. But then, the wrong file gets
WORMed: when the validator retrieves the file, he merely
validates that the attacker’s file has not been modified. Fi-
nally, if the attacker tampers the WORM certificate, then,
either the block hashes or the time stamps will detect the
error.

Such an FTP-server is not tamper-resistant. An at-
tacker can probably corrupt data if he has access to the
server (though, as mentioned in � 3.2, slight modifications
to the original data could be recovered with an appropri-
ate program). However it is tamper-evident: the attacker
cannot corrupt anything undetectably.

6 Conclusion

In the context of long-term archival, there is a strong need
for a secure storage system offering triple integrity guar-
antees. As no real solution existed yet, previous work
introduced the concepts of a new system named Time
Stamped Virtual WORM. However, only the theoretical
aspects of this system were investigated.

In this paper, we consequently focused on proposing
possible implementations for this system. To do so, we
defined two different block formats. The former is par-
ticularly efficient in situations where input is processed
as a stream of data. The format of a WORM header and
a security data block have been detailed. The latter im-
proves the streamed format in situations where writing
security information within user data is not acceptable. It
consists in detaching previously defined headers and se-
curity blocks in a separate location. Such a format is open
to conversions into well suited representations such as a

10

stand-alone XML WORM certificate.
Both formats have been designed to work over any kind

of support, and are open to future extensions. We have
also proved that they did not introduce any security flaw in
Time Stamped Virtual WORM systems. Finally, we have
illustrated the use of our detached format in a practical
case, over a tamper-evident FTP server.

Future work should still be done in several areas. For
instance, we should work over recovery of altered WORM
headers, over implementation of a hardware time stamper
card, and over the idea of a future WORM protocol to ease
communications between different entities.

Acknowledgements

The authors would like to extend their acknowledgements
to Gérald O’Nions, with whom discussion always turns
out to be very useful. WORMing an FTP server was his
initial idea and we believe it really shows use of detached
triple integrity.

References

[ACPZ01] C. Adams, P. Cain, D. Pinkas, R. Zuccherato,
Internet X.509 Public Key Infrastructure Time Stamp
Protocol (TSP), Network Working Group, RFC 3161,
August 2001.

[AFN01] AFNOR. Archivage électronique -
Spécifications relatives à la conception et à
l’exploitation de systèmes informatiques en vue
d’assurer la conservation et l’intégrité des documents
stockés dans ces systèmes. NF Z42-013, December
2001. in French.

[AG02] A. Apvrille and V.Girier. XML Security Time
Stamping Protocol. In proceedings of the Information
Security Solutions Europe Conference (ISSE 2002),
Paris, France, October 2002

[AH02] A. Apvrille and J.Hughes. A Time Stamped Vir-
tual WORM System. In proceedings of the SEcurité
des Communications sur Internet workshop (SECI
2002), Tunis, Tunisia, September 2002.

[ASD99] HP Automated Storage Division. Safeguard-
ing Data with WORM: Technologies, Processes, Le-
galities and Standards. Technical report, Hewlett-
Packard, 1999

[BdM91] J. Benaloh and M. de Mare. Efficient Broadcast
Time-Stamping. Technical Report 91-1, Clarkson
University, Department of Mathematics and Com-
puter Science, August 1991.

[BHS93] D. Bayer, S. Haber and W. S. Stornetta. Im-
proving the Efficiency and Reliability of Digital
Time-Stamping. In R. M. Capocelli, A. de Santis and
U. Vaccaro, editors, Sequences II: Methods in Com-
munication, Security and Computer Science, pages
329-334. Springer Verlag, New York, 1993.

[ERS02] D. Eastlake, J. Reagle and D. Solo. (Extensible
Markup Language) XML Signature Syntax and Pro-
cessing. Network Working Group, RFC 3275, March
2002

[ESI00] Electronic Signatures in Global and National
Commerce act (E-SIGN), Public Law 106-229, June
2000

[HS91] S. Haber, W. S. Stornetta, How to time stamp a
digital document, Journal of Cryptology, Vol.3, No.
2, pp. 99-111. 1991

[ITU97a] ITU-T Recommendation X.680, Information
technology - Abstract Syntax Notation One (ASN.1):
Specification of basic notation, OSI networking
and system aspects - Abstract Syntax Notation One
(ASN.1), Series X: Data networks and open system
communications, December 1997.

[ITU97b] ITU-T Recommendation X.690, Information
technology - ASN.1 encoding rules: Specification
of Basic Encoding Rules (BER), Canonical Encod-
ing Rules (CER) and Distinguished Encoding Rules
(DER), OSI networking and system aspects - Abstract
Syntax Notation One (ASN.1), Series X: Data net-
works and open system communications, December
1997.

[Kah00] R. Kahn. Evidentiary benefits and business im-
plcations of write-once-read many (’WORM’) optical

11

disk storage for record management. Technical re-
port, Cohasset Associates, Inc. for Hewlett-Packard,
December 2000.

[LAW01] Application de l’article 1316-4 du code civil et
relatif à la signature électronique. Décret n. 2001-072,
March 2001, in French.

[NIS01] NIST. Security Requirements for Cryptographic
Modules. U.S. Department of Commerce, FIPS PUB
140-2, August 2001.

[PR85] J. Postel and J. Reynolds. File Transfer Protocol
(FTP). Network Working Group, RFC 959, October
1985.

[SECS97] Securities and Exchange Commission (SEC).
Reporting Requirements for Brokers or Dealers under
the Securities Exchange Act of 1934, February 1997.

[W3C01] W3C. XML Schema, February 2001.

[Wil97] R. Williams. P-WORM, E-WORM, S-WORM,
Is a Sausage a Wienie ? Technical Report, Cohasset
Associates Inc., January 1997.

12

