
DigSig novelties

Libre Software Meeting 2005 – Security 
Topic

July 2005

DigSig Team:
Axelle Apvrille, David Gordon, Serge Hallyn, 

Makan Pourzandi, Vincent Roy



Outline

 Introduction: why and what for ?
 How: mechanisms involved in DigSig
 Short example: DigSig in use
 Recent Developments (2005)
 Future work



DigSig: why and what for ?
 Why ?

 Increasing impact of of malware (virus, worms) – mainly 
on Windows, but also on Unix

 Users are often careless (email attachments, download 
of Trojaned soft...)

 Once compromised, attacker hides its activity
 Firewalls aren't sufficient

 What for ?
 Prevent execution of malware
 Does not prohibit malware download
 Only for ELF binaries, on Linux.



The DigSig Solution
 Preliminary steps: get an RSA key pair
 Embed a signature within ELF binaries and 

libraries
 No need to keep a signature database
 It's already done: we use Bsign

 At run-time,
 The Linux kernel automatically verifies the 

signature. The binary only gets to run if 
signature is okay.

 No special command to launch
 Internal security is enhanced



Bsign embedded signature



Example: binary execution

sys_execvesys_execve

do_execve

search_binary_handler

load_elf_binary

do_mmap

bprm_alloc_security: nothing to do, no context

bprm_check_security: nothing to do (except scripts)
libraries don't get into this hook

file_mmap: load & verify signature
bprm_free_security: no security context



Signature caching



Signature Revocation

Administrator signs application A: SIG(A)

A's security at stake: administrator 
revokes SIG(A)
gets a newer version, or another soft (more secure)
signs the soft: SIG(A')

A is compromised

A cannot run, A' can

Revocation details:
●provide revocation list at startup
●Retrieve signatures: ./
tools/extract_sig malicious.bin sig
●Insmod -f ./digsig_verif.ko
●For each revoked signature: cat 
file.txt > /sys/digsig/revoke
●only root can write there



Hands on DigSig (1)
 Download Digsig v1.4.1 (or +): 

http://disec.sourceforge.net
 Requirements: gpg (1.2.2+), bsign v0.4.5, 

2.6.8 (or +) kernel with 
 CONFIG_SECURITY=Y
 CONFIG_SHA1=Y

 Compile
 DigSig.init utility: 
 ./digsig.init compile

 This actually calls make -C /lib/modules/`uname -r`/
build SUBDIRS=$PWD modules



Hands On ...(2)
 Generate key pair

 Gpg –gen-key ...
 Extract public key

 gpg –export –homedir=... >> key.pub
 Sign binaries and libraries

 bsign -s -v -l -i / -e /proc -e /dev -e /boot -e /
usr/X11R6/lib/modules

 Secure the private key
 Make sure only root access for /sys/digsig



Hands On ... (3)
 Start digsig:

 ./digsig.init start key.pub
 Loads the kernel module 

 Option: signature cache size
 insmod -f digsig_verif.ko 

digsig_max_cached_sigs=1024
 Sets the public key (/sys/digsig/key)
 Sets the revocation file (/sys/digsig/revoke)

 Try it:
 ./ps-signed
 ./ps-unsigned:cannot execute binary file
 Realistic try: take off the DIGSIG_DEBUG flag in the 

Makefile, re-compile. 



DigSig Performance

 1st load overhead slowly grows with executable size 
(~0.0016 µs / byte), but a standard Debian has no more 
than 1.8% executables and libraries above 512KB.

Small overhead (~1%) 
shows during 
system time 

The caching mechanism 
improves performance

2.6.4 kernel make on Pentium 4 2.4Ghz
Time ls -Al on Pentium 4 2.4 Ghz



Recent developments (1)
 64-bit architecture support
 Why ? 

 Get 64-bit ELF binaries checked
 Ensure 32-bit binaries run on 64-bit 

architectures
 How ?

 Switch to elf32_* or elf64_* structures 
depending on the ELF magic number in the ELF 
header: ELFCLASS32(1), ELFCLASS64(2)

 Use the appropriate structures and sizes
 Lead: Serge Hallyn



Recent developments (2)
 RSA 2048 support

 Why ? 1024-bit starting to get slightly « weak », 
more and more users with 2048-bit keys

 How ? 
 Already okay in the kernel module
 Update the key extraction tool: read an 

OpenPGP Public Key packet (6)
 Lead: Axelle Apvrille

HeaderPTag Version Time Algo MPI
n

MPI 
e



Recents developments (3)
 Script support

 Compute a detached signature (gpg -sb ...)
 Add signature as an extended attribute (setxattr)

 Run-time kernel signature verification
 In bprm_check_security

 Problem
 Won't secure « sh myscript.sh »

 Lead: Serge Hallyn (dev) ... and all team



Recent dev: passwords for module 
unloading (4)

 Why ? Prevent unsollicited module unloading...
 How ? Require a password for unloading

 Unless CONFIG_FORCE_MODULE_UNLOAD
 Set password at load time

 Communicate password via /sys/digsig/passwd
 digest password (sha1 module)

 Security view: this is only a workaround. Cannot 
solve the roots of the problem.

 Lead: Marco Slaviero



Recent developments (5)
 LTP (Linux Test Project): ltp.sf.net
 Why ? Critical regression introduced in Digsig v1.3.x, 

v1.4.0: fixed in v1.4.1
 How ?

 Standalone scripts in ltp/testcases/kernel/security/digsig
 Retrieve digsig and put it in ./digsig-latest
 Make all && sh test.sh

 What does it test ?
 Impossible to write after execute
 Impossible to execute after write
 Try to modify bytes of an executable

 Lead: Serge Hallyn



Recent Issue
 Test

 Take a signed executable, modify byte per byte, 
check signature

 => fact: there are a few spots where binary 
can be modified without detection

 Locations
 OpenPGP signature packets v3

 All bytes are not signed (e.g possible to change 
signature packet header) => solved in v4

 Left 16 bits of signed data hash => only intended for 
quick tests

 Bsign: zeroized area in signature section



OpenPGP Signature Message

Packet header: old format, indicates a signature packet
Signature packet type: 0x00 = signature of a binary document
Public Key Algo: 0x01 = RSA (encrypt or sign)
Hash algo: 0x02 = SHA-1
Signed data = Bsign signature section + type + creation time



Exploiting the Zeroized Area

 (Very) simple «exploit»:
 Hiding unsigned data in the signed executable

 Locate the « bsign » signature section
 Go the end, go back until != 0x00
 Write data in there

 ./hide <bsigned-exec> <data-to-hide>



Hiding data in binary (2)



Future developments
 Handling script signature in all cases
 Use standard Makefiles instead of digsig.init
 Perhaps enhance crypto with ASM code ?
 Sign the signature revocation directory (tar & sign)
 Securing the public key (integrity)

 The public key shouldn't be replaced
 Use a TPM:
 Bind a public key with platform configuration

 Create key pair, store key pair in TSS object
 Create a PCR object, add values to be hashed
 Wrap the object with a TPM key
 Check integrity at boot time (automatic)



Related Work

Bsign

Cryptomark

Signed Exec

Tripwire

Umbrella

DigSig

Run-time
sig. verif File type Availability

No

Yes

Yes

No

Uses DigSig

Yes

Binaries

Binaries

Binaries + 
scripts
All

Uses DigSig

Binaries

GPL

Abandonned ?

Not GPL

GPL & 
commercial
GPL

GPL



DigSig Stacking

 Three possibilities
 Modify digsig to allow for module stacking
 Modify the other module to allow for stacking
 Use the stacker patches at 

sourceforge.net/projects/lsm-stacker


